Tillbaka till svenska Fidonet
English   Information   Debug  
R20_SPRAK.ENGLISH   0/1
R20_SQUISH   107
R20_TEST   2
R20_WORST_OF_FIDONET   12
RAR   0/9
RA_MULTI   106
RA_UTIL   0/162
REGCON.EUR   0/2056
REGCON   0/13
SCIENCE   0/1206
SF   0/239
SHAREWARE_SUPPORT   0/5146
SHAREWRE   0/14
SIMPSONS   0/169
STATS_OLD1   0/2539.065
STATS_OLD2   0/2530
STATS_OLD3   0/2395.095
STATS_OLD4   0/1692.25
SURVIVOR   0/495
SYSOPS_CORNER   0/3
SYSOP   0/84
TAGLINES   0/112
TEAMOS2   0/4530
TECH   0/2617
TEST.444   0/105
TRAPDOOR   0/19
TREK   0/755
TUB   0/290
UFO   0/40
UNIX   0/1316
USA_EURLINK   0/102
USR_MODEMS   0/1
VATICAN   0/2740
VIETNAM_VETS   0/14
VIRUS   0/378
VIRUS_INFO   0/201
VISUAL_BASIC   0/473
WHITEHOUSE   0/5187
WIN2000   0/101
WIN32   0/30
WIN95   0/4290
WIN95_OLD1   0/70272
WINDOWS   0/1517
WWB_SYSOP   0/419
WWB_TECH   0/810
ZCC-PUBLIC   0/1
ZEC   4

 
4DOS   0/134
ABORTION   0/7
ALASKA_CHAT   0/506
ALLFIX_FILE   0/1313
ALLFIX_FILE_OLD1   0/7997
ALT_DOS   0/152
AMATEUR_RADIO   0/1039
AMIGASALE   0/14
AMIGA   0/331
AMIGA_INT   0/1
AMIGA_PROG   0/20
AMIGA_SYSOP   0/26
ANIME   0/15
ARGUS   0/924
ASCII_ART   0/340
ASIAN_LINK   0/651
ASTRONOMY   0/417
AUDIO   0/92
AUTOMOBILE_RACING   0/105
BABYLON5   0/17862
BAG   135
BATPOWER   0/361
BBBS.ENGLISH   0/382
BBSLAW   0/109
BBS_ADS   0/5290
BBS_INTERNET   0/507
BIBLE   0/3563
BINKD   0/1119
BINKLEY   0/215
BLUEWAVE   0/2173
CABLE_MODEMS   0/25
CBM   0/46
CDRECORD   0/66
CDROM   0/20
CLASSIC_COMPUTER   0/378
COMICS   0/15
CONSPRCY   0/899
COOKING   33710
COOKING_OLD1   0/24719
COOKING_OLD2   0/40862
COOKING_OLD3   0/37489
COOKING_OLD4   0/35496
COOKING_OLD5   9370
C_ECHO   0/189
C_PLUSPLUS   0/31
DIRTY_DOZEN   0/201
DOORGAMES   0/2065
DOS_INTERNET   0/196
duplikat   6002
ECHOLIST   0/18295
EC_SUPPORT   0/318
ELECTRONICS   0/359
ELEKTRONIK.GER   1534
ENET.LINGUISTIC   0/13
ENET.POLITICS   0/4
ENET.SOFT   0/11701
ENET.SYSOP   33963
ENET.TALKS   0/32
ENGLISH_TUTOR   0/2000
EVOLUTION   0/1335
FDECHO   0/217
FDN_ANNOUNCE   0/7068
FIDONEWS   24191
FIDONEWS_OLD1   0/49742
FIDONEWS_OLD2   0/35949
FIDONEWS_OLD3   0/30874
FIDONEWS_OLD4   0/37224
FIDO_SYSOP   12852
FIDO_UTIL   0/180
FILEFIND   0/209
FILEGATE   0/212
FILM   0/18
FNEWS_PUBLISH   4461
FN_SYSOP   41736
FN_SYSOP_OLD1   71952
FTP_FIDO   0/2
FTSC_PUBLIC   0/13627
FUNNY   0/4886
GENEALOGY.EUR   0/71
GET_INFO   105
GOLDED   0/408
HAM   0/16084
HOLYSMOKE   0/6791
HOT_SITES   0/1
HTMLEDIT   0/71
HUB203   466
HUB_100   264
HUB_400   39
HUMOR   0/29
IC   0/2851
INTERNET   0/424
INTERUSER   0/3
IP_CONNECT   719
JAMNNTPD   0/233
JAMTLAND   0/47
KATTY_KORNER   0/41
LAN   0/16
LINUX-USER   0/19
LINUXHELP   0/1155
LINUX   0/22120
LINUX_BBS   0/957
mail   18.68
mail_fore_ok   249
MENSA   0/341
MODERATOR   0/102
MONTE   0/992
MOSCOW_OKLAHOMA   0/1245
MUFFIN   0/783
MUSIC   0/321
N203_STAT   932
N203_SYSCHAT   313
NET203   321
NET204   69
NET_DEV   0/10
NORD.ADMIN   0/101
NORD.CHAT   0/2572
NORD.FIDONET   189
NORD.HARDWARE   0/28
NORD.KULTUR   0/114
NORD.PROG   0/32
NORD.SOFTWARE   0/88
NORD.TEKNIK   0/58
NORD   0/453
OCCULT_CHAT   0/93
OS2BBS   0/787
OS2DOSBBS   0/580
OS2HW   0/42
OS2INET   0/37
OS2LAN   0/134
OS2PROG   0/36
OS2REXX   0/113
OS2USER-L   207
OS2   0/4794
OSDEBATE   0/18996
PASCAL   0/490
PERL   0/457
PHP   0/45
POINTS   0/405
POLITICS   0/29554
POL_INC   0/14731
PSION   103
R20_ADMIN   1124
R20_AMATORRADIO   0/2
R20_BEST_OF_FIDONET   13
R20_CHAT   0/893
R20_DEPP   0/3
R20_DEV   399
R20_ECHO2   1379
R20_ECHOPRES   0/35
R20_ESTAT   0/719
R20_FIDONETPROG...
...RAM.MYPOINT
  0/2
R20_FIDONETPROGRAM   0/22
R20_FIDONET   0/248
R20_FILEFIND   0/24
R20_FILEFOUND   0/22
R20_HIFI   0/3
R20_INFO2   3268
R20_INTERNET   0/12940
R20_INTRESSE   0/60
R20_INTR_KOM   0/99
R20_KANDIDAT.CHAT   42
R20_KANDIDAT   28
R20_KOM_DEV   112
R20_KONTROLL   0/13318
R20_KORSET   0/18
R20_LOKALTRAFIK   0/24
R20_MODERATOR   0/1852
R20_NC   76
R20_NET200   245
R20_NETWORK.OTH...
...ERNETS
  0/13
R20_OPERATIVSYS...
...TEM.LINUX
  0/44
R20_PROGRAMVAROR   0/1
R20_REC2NEC   534
R20_SFOSM   0/341
R20_SF   0/108
Möte SCIENCE, 1206 texter
 lista första sista föregående nästa
Text 331, 74 rader
Skriven 2005-01-28 21:29:50 av Herman Trivilino (1:106/2000.7)
Ärende: PNU 717
===============
PHYSICS NEWS UPDATE
The American Institute of Physics Bulletin of Physics News
Number 717 January 27, 2005
by Phillip F. Schewe, Ben Stein

A PHASE CHANGE IN HIGH-DENSITY DATA STORAGE.  A new approach to storing bits of
information in a rewritable medium substitutes electron beams for optical
beams.  Scientists at Hewlett Packard create individual bits in the form of
tiny amorphous regions inside a thin indium-selenium layer.  That layer, along
with another layer beneath (gallium-selenium) and a silicon substrate, form the
principal parts of a pn-junction diode.  The read-write cycle goes like this:
short, high-power bursts from an electron beam are used to write a "1" by
melting a tiny portion of the InSe layer, turning it into a glassy blob. 
Alternatively the blob can be erased by the use of a longer, low-power beam
pulse, which recrystallizes the material.  With the help of an even lower-power
beam pulse the bit can be read out as either a 1 (the amorphous blob yields
little or no detectable current in the pn-junction diode ) or a 0 (the
crystalline material yields a high diode current).  Electron-beam storage can
potentially reach higher
 densities than optical storage due to the shorter wavelength of high-energy
electrons.  Ultimately, it may also enable faster data access through
electrostatic deflection of the electron-beams. The HP tests so far have used a
laser beam rather than an electron beam to do the writing part (their electron
beam isn't yet strong enough) but employ an e-beam (essentially a scanned
electron microscope) to do the reading.  The response of the diode storage
medium is fast enough to allow reading rates of at least a million bits per
second per electron-beam and more than 100 write/erase/rewrite cycles have been
carried out successfully.  The bit size right now is about 150 nm in lateral
extent (for an area density of about 29 gigabits per square inch), but this
will probably be made far smaller, maybe down to 10 nm.  (Gibson et al.,
Applied Physics Letters, 31 January 2005; contact Gary Gibson,
gary.gibson@hp.com, 650-857-2125 or Alison Chaiken, chaiken@hpl.hp.com, 650-23
6-2231)
        
ORGANIC MOLECULES ON THE REBOUND. Scientists at the International University of
Bremen and the University of Bonn have recently determined the precise
structure of a large organic molecule after its interaction with a metal
surface. The group of scientists also used the structure information to
decipher clues about the chemical bond between the molecule and the surface. 
The organic-metallic interface is very important in science, especially in the
fields of catalysis (chemical reactions between two species proceeding in the
presence of a third species), bio-sensing, and molecular electronics (where
signals are processed through circuit elements consisting, in some cases, of
single molecules or arrays of molecules). In this regard, larger molecules are
harder to study because of their size, their tortuous shape, and many internal
modes of vibration.  In the Bremen-Bonn experiment the starting point is a
super-clean silver surface in ultrahigh vacuum.  Next the molecule is allowed
to fall onto the surface where it reacts chemically with surface atoms and is
slightly distorted thereby.  Next, x rays from a synchrotron are brought to
bear on the adsorbed molecule.  By the scattering of the x rays the researchers
can deduce, in some cases atom for atom, where the component parts of the
molecule are relative to the nearby metal surface.  The worked-out structure of
the reacted molecule can then be compared to the structure for the same type of
molecule in the free (gaseous) state.  In this way the distortion of the
molecule, whose full name is perylene-tetracarboxylic-dianhydride (PTCDA), can
be worked out.  It is notable that the x-ray scattering technique used here was
not the normal Bragg scattering in use for decades.  Because the sample was so
thin, the approach employed here was based on standing x-ray waves.  The x rays
reflected from the silver crystal formed standing waves when they interfered
with incoming x rays.  The ensuing atomic-scale "ruler" can be used to map the
organic molecule by slightly grading the energy of the incoming x rays.  This
normal incidence x-ray standing wave technique has been used before but very
rarely on large organic adsorbates where it has great potential. What happened
as the normally planar molecule approached the surface?  Surprisingly, there
was some bending, mostly because of the readiness of some oxygen atoms (which
weren't supposed to play much of a chemical role) to form bonds with the
surface silver atoms.  Another discovery: the molecule forms not a single bond
but a hierarchy of two types of bonds.  (Hauschild et al., Physical Review
Letters, 28 January 2005; contact Stefan Tautz, 49-421-200-3223,
s.tautz@iu-bremen.de;
lab website http://imperia.iu-bremen.de/ses/physics/tautz/30797/ )

---
 * Origin: Big Bang (1:106/2000.7)